学习工作经历
2017年9月至今 教授 BETVLCTOR伟德国际官网平台
2016年2月至2017年8月 高级工程师 Defect Center of Excellence, Applied Materials, USA
2011年10月至2016年2月 博士后 Stanford University, USA
2006年9月至2011年7月 直博 北京大学化学与分子工程学院
2002年9月至2006年7月 本科 吉林大学BETVLCTOR伟德国际官网平台
招生信息
具有化学、材料、物理、电子背景的博士后、博士、硕士和本科生,勤奋刻苦、积极乐观。
研究领域
设计制备新型低维材料,与高分子材料结合,用于生物电子、可穿戴医疗和人机交互。
主持或参加科研项目(课题)及人才计划情况
(1)国防科技领域基金项目,重点项目,2022-01至2024-01
(2)国家自然科学基金,面上项目,亚微米厚度超薄电生理电极的设计、制备与应用,2023-01至2026-12
(3)国家自然科学基金,面上项目,表面肌电信号采集的皮肤界面电化学和电极材料研究,2021-01至2024-12
(4)国家自然科学基金,青年科学基金,弹性基底上二硫化钼的可控制备及其在可拉伸电子器件中的应用,2020-01至2022-12
(5)北京市科学技术委员会,北京石墨烯产业培育项目,石墨烯表面肌电信号检测电极开发,2019-06至2021-06
(6)BETVLCTOR伟德国际官网平台引进高层次人才专项
(7)国家自然科学基金,海外优秀青年基金
代表性论文:
(1) Zhao Yan; Zhang Song; Yu Tianhao; Zhang Yan; Ye Guo; Cui Han; He Chengzhi; Jiang Wenchao; Zhai Yu; Lu Chunming; Gu Xiaodan; Liu Nan*, Ultra-Conformal Skin Electrodes with Synergistically Enhanced Conductivity for Long-Time and Low-Motion Artifact Epidermal Electrophysiology. Nature Communication, 2021, 12 (1), 4880.
(2) Chen Tingle; Guo Ye; Haowei Wu, Shuyan Qi, Guorong Ma, Yan Zhang, Yan Zhao, Jia Zhu, Xiaodan Gu, and Nan Liu* Highly Conductive and Underwater Stable Ionic Skin for All-Day Epidermal Biopotential Monitoring. Advanced Functional Materials, Accepted.
(3) Zhang Weifeng#; Hao He#; Lee Yangjin; Zhao Yan; Tong Lianming; Kim Kwanpyo; Liu Nan*, One‐Interlayer‐Twisted Multilayer MoS2 Moiré Superlattices. Advanced Functional Materials, 2022, 32 (19).
(4) Zhang Weifeng; Liu Yulong; Pei Xue; Yuan Zhihong; Zhang Yan; Zhao Zihan; Hao He; Long Run; Liu Nan*, Stretchable MoS2 Artificial Photoreceptors for E‐Skin. Advanced Functional Materials, 2021, 32 (10).
(5) Ye Guo; Qiu Jiakang; Fang Xiaoyu; Yu Tianhao; Xie Yayan; Zhao Yan; Yan Dongpeng; He Chengzhi*; Liu Nan*, A Lamellibranchia-inspired Epidermal Electrode for Electrophysiology. Materials Horizons, 2021, 8 (3), 1047-1057.
(6) Qi Shuyan#, Zhang Weifeng #, Wang Xiaoli, Ding Yifang, Zhang Yan, Qiu Jiakang. Chen Ting Lei, Long Run, Liu Nan*, N-doped MoS2 Via Assembly Transfer on An Elastomeric Substrate for High-Photoresponsivity, Air-Stable and Stretchable Photodetector. Nano Research, 2022
(7) Li Guanmeng, Zhang Weifeng, Zhang Yan, Lee Yangjin, Zhao Zihan, Song Xue-zhi, Tan Zhenquan, Kim Kwanpyo, Liu Nan*, Ammonium Salts: New Synergistic Additive for Chemical Vapor Deposition Growth of MoS2. The Journal of Physical Chemistry Letters, 2021, 12, 51, 12384–12390
(8) Zhang Weifeng, Zhao Zihan, Yang Yating, Zhang Yan, Hao He, Li Li, Xu Weigao, Peng Banghua, Long Run, Liu Nan*, Paraffin-Enabled Compressive Folding of Two-Dimensional Materials with Controllable Broadening of the Electronic Band Gap. ACS Applied Materials & Interfaces, 2021, 13, 34, 40922–40931
(9) Du Xiaojia, Lee Yangjin, Zhang Yan, Yu Tianhao, Kim Kwanpyo*, Liu Nan*, Electronically Weak Coupled Bilayer MoS2 at Various Twist Angles via Folding. ACS Applied Materials & Interfaces, 2021, 13, 19, 22819-22827
(10) Du Xaiojia; Jiang Wenchao; Zhang Yan; Qiu Jiakang; Zhao Yan; Tan Qishuo; Qi Shuyan; Ye Guo; Zhang Weifeng; Liu Nan*, Transparent and Stretchable Graphene Electrode by Intercalation Doping for Epidermal Electrophysiology. ACS Applied Materials & Interfaces, 2020, 12 (50), 56361-56371.
(11) Lin Jing*; Cai Xianfang; Liu Zili; Liu Nan*, Xie Min, Zhou BingPu, Wang Huaquan, Zhanhu Guo*, Anti-Liquid-Interfering and Bacterially Antiadhesive Strategy for Highly Stretchable and Ultrasensitive Strain Sensors Based on Cassie-Baxter Wetting State. Advanced Functional Materials, 2020:2000398.
(12) Qiu Jiakang#; Yu Tianhao#; Zhang Weifeng; Zhao Zihan; Zhang Yan; Ye Guo; Zhao Yan; Du Xiaojia; Liu Xu; Yang Lu; Zhang Lijuan; Qi Shuyan; Tan Qishuo; Guo Xinyu; Li Guanmeng; Guo Shaoshi; Sun Huiyuan; Wei Di; Liu Nan*, A Bioinspired, Durable, and Nondisposable Transparent Graphene Skin Electrode for Electrophysiological Signal Detection. ACS Materials Letters 2020, 2 (8), 999-1007.
(13) Li Guanmeng, Wang Xiaoli, Han Bo, Zhang Weifeng, Qi Shuyan, Zhang Yan, Qiu Jiakang, Gao Peng, Guo Shaoshi, Long Run, Tan Zhenquan*, Song Xue-Zhi*, Liu Nan*, Direct Growth of Continuous and Uniform MoS2 Film on SiO2/Si Substrate Catalyzed by Sodium Sulfate. The Journal of Physical Chemistry Letters, 2020, 11, 1570-1577
(14) Ye Guo; Song Zizheng; Yu Tianhao; Tan Qishuo; Zhang Yan; Chen Tinglei; He Changcheng; Jin Lihua; Liu Nan*, Dynamic Ag-N Bond Enhanced Stretchable Conductor for Transparent and Self-Healing Electronic Skin. ACS Applied Materials & Interfaces, 2020, 12 (1), 1486-1494
(15) Zhang Yan; Zhang Weifeng; Ye Guo; Tan Qishuo; Zhao Yan; Qiu Jiakang; Qi Shuyan; Du Xiaojia; Chen Tinglei; Liu Nan*, Core-Sheath Stretchable Conductive Fibers for Safe Underwater Wearable Electronics. Advanced Materials Technologies, 2019, 5 (1).
(16) Liu Nan; Chortos Alex; Lei Ting; Jin Lihua; Kim Taehoroy; Bae Wongyu; Zhu Chenxin; Wang Sihong; Pfattner Raphael; Chen Xiyuan; Sinclair Robert; Bao Zhenan*, Ultratransparent and Stretchable Graphene Electrodes. Science Advances 2017, 3 (9)
(17) Liu Nan; Kim Kwanpyo; Hus Po-chun; Yan Hao; Cui Yi; Bao Zhenan*, Effect of Chemical Structure on the Polymer-Templated Growth of Graphene Nanoribbons. ACS Nano, 2015, 9, 9403
(18) Liu Nan; Kim Kwanpyo; Hus Po-chun; Sokolov Anatoliy N.; Yap Fung Ling; Yuan Hongtao; Xie Yanwu; Yan Hao; Cui Yi; Hwang Harold Y.; Bao Zhenan*, Large Scale Production of Graphene Nanoribbons from Electrospun Polymers. Journal of American Chemical Society., 2014, 136, 17284.
(19) Liu Nan; Tian He, Schwartz Gregor; Tok Jeffrey B.H.; Ren Tian-Ling; Bao Zhenan*, Large-Area, Transparent and Flexible Infrared Photodetector Fabricated Using P-N Junctions Formed by N-doping CVD-Grown Graphene. Nano Letters, 2014, 14, 3702.
(20) Wei Peng #; Liu Nan#; Lee Hye Ryoung; Adijanto Eric; Ci Lijie; Naab Benjamin D.; Zhong Jian Qiang; Park Jinseong; Chen Wei; Cui Yi; Bao Zhenan*, Tuning the Dirac Point In CVD-Grown Graphene Through Solution Processed n-Type Doping With 2-(2-Methoxyphenyl)-1,3-dimethyl-2,3-dihydro-1H-benzoimidazole Nano Letters, 2013, 13, 1890.
(21) Liu Nan#; Fu Lei#; Dai Boya; Yan Kai; Liu Xun; Zhao Ruiqi; Zhang Yanfeng; Liu Zhongfan*, Universal Segregation Growth Approach to Wafer-Size Graphene from Non-Noble Metals. Nano Letters, 2011, 11, 297.
(22) Liu Nan#; Fu Lei#; Pan Zhonghuai; Zhang Chaohua; Dai Boya; Liu Zhongfan*, The Origin of Wrinkles on Transferred Graphene. Nano Research, 2011, 4, 996.
(23) 刘楠;赵艳;喻天豪;一种基于导电聚合物转移的石墨烯皮肤电极及其制备方法,中国,2020-09-28, ZL202011044091.0. (专利)
(24) 刘楠;张岩;张巍锋;一种制备低维材料堆叠结构的转移方法与装置,中国,2021-05-17,ZL202110531727.2. (专利)